IIS at ImageCLEF 2015: Multi-label Classification Task

نویسندگان

  • Antonio Jose Rodríguez-Sánchez
  • Sabrina Fontanella
  • Justus H. Piater
  • Sándor Szedmák
چکیده

We propose an image decomposition technique that captures the structure of a scene. An image is decomposed into a matrix that represents the adjacency between the elements of the image and their distance. Images decomposed this way are then classified using a maximum margin regression (MMR) approach where the normal vector of the separating hyperplane maps the input feature vectors into the outputs vectors. Multiclass and multilabel classification are native to MMR, unlike other more classical maximum margin approaches, like SVM. We have tested our approach with the ImageCLEF 2015 multi-label classification task, obtaining high rankings at that task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Overview of ImageCLEF at the CLEF 2016 Labs

This paper presents an overview of the ImageCLEF 2016 evaluation campaign, an event that was organized as part of the CLEF (Conference and Labs of the Evaluation Forum) labs 2016. ImageCLEF is an ongoing initiative that promotes the evaluation of technologies for annotation, indexing and retrieval for providing information access to collections of images in various usage scenarios and domains. ...

متن کامل

Overview of the ImageCLEF 2015 Medical Classification Task

This articles describes the ImageCLEF 2015 Medical Classification task. The task contains several subtasks that all use a data set of figures from the biomedical open access literature (PubMed Central). Particularly compound figures are targeted that are frequent in the literature. For more detailed information analysis and retrieval it is important to extract targeted information from the comp...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

KDEVIR at ImageCLEF 2015 Scalable Image Annotation, Localization, and Sentence Generation task: Ontology based Multi-label Image Annotation

In this paper, we describe our participation in the ImageCLEF 2015 Scalable Concept Image Annotation task. In this participation, we propose an approach of image annotation by using ontology at several steps of supervised learning with noisy unlabeled data. In this regard, we construct tree-like ontology for each annotating concept of images using WordNet and Wikipedia. The constructed ontologi...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015